
Gaussian processes for inference of deep
state-space models

Petar M. Djurić

Stony Brook University

Work done with Yuhao Liu

Other contributers: Marzieh Ajirak, Paolo Banelli, Kurt Butler, Tong
Chen, Chen Cui, Taraneh Ghanbari, Guanchao Feng, Lingqing Gan,

Charles Mikell, Sima Mofakham, Jessica Phillips, Yuri Saalman,
Yuanqing Song, Hechuan Wang, Daniel Waxman, Liu Yang

December 15, 2021

1 / 29

Outline

• Motivation

• Gaussian processes, deep Gaussian processes, and deep latent
variable Gaussian processes

• Gaussian processes for inference in state-space models

• Ensembles of Gaussian processes

• Extensions to deep state-space models

• Conclusions

2 / 29

Motivation

• Our group has been working on a project where the main
objective is to find the source of consciousness and how
consciousness emerges.

• The measurements that are available for processing are
• multivariate time series (local field potential signals) and
• multivariate spike trains.

3 / 29

Motivation - contd.

4 / 29

Motivation - contd.

Guiding principles:

• Compressibility: The main goal of science is to understand
Nature. When the scientific process is successful, a vast array
of data can be concisely expressed by compact mathematical
expressions. We then say that the data are algorithmically
compressible.

• The principle of locality: In science, it is well established
that local events (e.g., local in time and space) are the most
influential. We use this principle in our work by building
networks of objects and identifying “neighbors” of each object.

5 / 29

Gaussian processes

A Gaussian process, written as GP (m(·), k(·, ·|θθθ)), is in essence a
distribution over functions.

m(·) is a mean function,

k(·, ·) is a kernel or covariance function, and

θθθ is the hyper-parameter parameterizing the kernel.

6 / 29

Gaussian Processes - contd.

For any set of inputs X = [xn]Nn=1 := [x1, . . . , xN]> in the domain
of a real-valued function f ∼ GP(m, k), the function values
f = [f (xxxn)]Nn=1 are Gaussian distributed, i.e.,

p(f|X) = N (f|mX,KXX)

mX = [m(xn)]Nn=1 is the mean

KXX := k(X,X|θθθ) = [k(xi , xj)]i ,j is the covariance matrix over all
pairs in X.

7 / 29

Gaussian Processes (contd.)

Given the observations f on X, the predictive distribution of f∗ at
new inputs X∗ is given by

p(f∗|X∗, f,X) = N (f∗|µµµ∗,ΣΣΣ∗)

with predictive mean and variance:

µµµ∗ = mX∗ + KX∗XK−1
XX(f−mX)

ΣΣΣ∗ = KX∗X∗ −KX∗XK−1
XXKXX∗

8 / 29

Gaussian Processes (contd.)

0 50 100 150 200 250 300 350 400 450 500

-0.5

0

0.5

1

1.5

2

2.5
ground truth

0 50 100 150 200 250 300 350 400 450 500

-2

-1

0

1

2

3
noisy data

9 / 29

Gaussian Processes (contd.)

0 50 100 150 200 250 300 350 400 450 500

-20

-10

0

10

20

30
samples from prior

0 50 100 150 200 250 300 350 400 450 500

-0.5

0

0.5

1

1.5

2

2.5
samples from posterior

10 / 29

Gaussian Processes (contd.)
posterior of function

-6 -4 -2 0 2 4 6

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

mean +/- 2*std

mean

observed data

11 / 29

Gaussian Processes (contd.)

Gaussian processes do not scale up well with N, the number of
input sets of data.

One has to invert the N × N matrix KXX, which for large values of
N becomes an issue.

In order to ameliorate the problem, we resort to approximations of
the kernels.

12 / 29

Gaussian Processes (contd.)

Compared with an approximation in a function space, a Gaussian
process with shift-invariant kernel has another way of
approximation, which focuses on feature spaces.

One can construct a vector of basis functions, also known as
random features, comprised of trigonometric functions and defined
by

φφφv(x) =
1√
R

[sin(x>v1), cos(x>v1), ..., sin(x>vR), cos(x>vR)]>

where v1:R = {vr}Rr=1 are vectors sampled from the power spectral
density of the kernel.

13 / 29

Gaussian Processes (contd.)

Then the kernel function k(x, x′) can be approximated by
φφφv(x)>φφφv(x′) if the kernel is shift-invariant. It allows for a
parametric approximation of the function according to

f(x) ≈ Φ>v ηηη ∼ GP(Φ>v µµµ,Φ
>
v ΣΦv)

where ηηη ∈ R2R×1 is a parameter vector, which is Gaussian
distributed, N (µµµ,Σ), and Φ ∈ R2R×N .

Thus, the Gaussian process is approximated by another Gaussian
process with a sparse representation {µµµ,Σ|v1:R}, where v1:R are
the pre-selected random features.

14 / 29

The state-space model

Suppose the observations yt are produced by a state space model

xt = f (xt−1) + ut

yt = g(xt) + vt

where the functions f (·) and g(·) are unknown, and
ut ∼ N (0, σ2

uI) and vt ∼ N (0, σ2
v I) are Gaussian distributed errors

(noises).

15 / 29

The state-space model (contd.)

We now approximate the state-space model by the following model:

xt = ΨΨΨ>φφφv(xt−1) + ut

yt = ΘΘΘ>φφφv(xt) + vt

where φφφv represents the random features, and ΨΨΨ ∈ R2R×dx and
ΘΘΘ ∈ R2R×dy , or more specifically, ΨΨΨ = [ψψψ1,ψψψ2, . . . ,ψψψdx], and

ΘΘΘ = [θθθ1, θθθ2, . . . , θθθdy].

We assume that the parameter variables are all independent, i.e.,
that the columns of ΨΨΨ and ΘΘΘ are independent from the other
columns of ΨΨΨ and ΘΘΘ, respectively.

16 / 29

The state-space model (contd.)

Further, we assume a dynamic setting where the functions f (·) and
g(·) change with time. We model ψψψi and θθθj as random walks, and

thus, the model becomes

ψψψi ,t = ψψψi ,t−1 + ei ,t θθθj ,t = θθθj ,t−1 + εεεj ,t

xi ,t = φφφ>v (xt−1)ψψψi ,t + ui ,t , yj ,t = φφφ>v (xt)θθθj ,t + vj ,t

where ei ,t ∼ N (0, σ2
e I) and εεεj ,t ∼ N (0, σ2

ε I) are Gaussian noises.

For the indices i and j , we have i ∈ {1, 2, · · · , dx} and
j ∈ {1, 2, · · · , dy}.

Thus, we have two linear state-space models, one for the state and
one for the observations. Given the sequence xt , we can readily
apply dx Kalman filters to estimate ψψψi ,t and dy Kalman filters
to estimate θθθj ,t (i ∈ {1, 2, · · · , dx} and j ∈ {1, 2, · · · , dy}).

17 / 29

The estimation process

Suppose that at t − 1 we have the estimates of xt−1, ΨΨΨt−1, and
ΘΘΘt−1. Then we estimate xt , ΨΨΨt , and ΘΘΘt as follows:

1. Estimate xt using particle filtering (note that the model is
nonlinear in xt).

2. Given the estimated xt , apply the two sets of Kalman filters to
estimate ΨΨΨt , and ΘΘΘt .

These steps can be repeated before moving to the next time
instant.

18 / 29

The ensemble approach

The use of only a single set of v1:R might not be accurate enough.

Instead we use an ensemble of different sets of v1:R . Denote v
(m)
1:R

as the m−th set of pre-selected parameters v1:R sampled from the
PSD of the kernel, where m = 1 : M.

Thus, we end up with M sets of filters, where each set is
characterized by its random features.

19 / 29

The ensemble approach - cont.
Next, we invoke particle filtering again. We evaluate each set of
filters by weights assigned to the filters.

If the weights at time t − 1 are all equal, then

w
(m)
t ∝ N

(
yt |Θ̂ΘΘ

>
t φφφ

(m)
v (x̂t), σ

2
v I
)

where x̂t and Θ̂ΘΘt are the respective estimates of xt and ΘΘΘt by the
m−th set of filters.

The estimates of the functions f (·) and g(·) are

f̂t(xt−1) =
M∑

m=1

w
(m)
t Ψ̂ΨΨ

>
t φφφ

(m)
v (xt−1)

ĝt(xt) =
M∑

m=1

w
(m)
t Θ̂ΘΘ

>
t φφφ

(m)
v (xt)

20 / 29

The ensemble approach - cont.

Resampling in particle filtering is a necessary step to avoid
deterioration of the particle filtering with time.

Here we can also apply resampling. If a pair of Gaussian processes
is resampled more than once, we need to assign to these processes
different values for xt , ΨΨΨt and ΘΘΘt .

A straightforward way of accomplishing this is by drawing from
respective Gaussians.

21 / 29

Some results

The following state-space model was generated by:

x1,t = 0.9x1,t−1 + 0.5 sin(x2,t−1) + u1,t

x2,t = 0.1x3
1,t − 0.9x1,t + u2,t

y1,t = 1.8 cos(x1,t)− 0.7 sin(x2,t) + v1,t

y2,t = 0.5x1,t − 1.3 sin(x1,t) + v2,t

y3,t = 2.0x1,t − 0.4x2,t + v3,t

y4,t = 0.05x3
1,t + v4,t

y5,t = x2,t/(1 + x2
2,t) + v5,t

22 / 29

Some results - contd.

23 / 29

Some results - contd.

24 / 29

Deep Gaussian Processes

Z XH−1 . . . X2 X1 Y

• Y ∈ RN×dy : observations, output of the network

• N is the number of observation vectors.
• dy is the dimension of the vectors yn.

• {Xh}H−1
h=1 : intermediate latent states

• dimensions {dh}H−1
h=1 are potentially different.

• Z ∈ RN×dz : the input to the network
• Z is observed for supervised learning.
• Z is unobserved for unsupervised learning.

25 / 29

Deep Gaussian State Space Processes

𝒙𝒙𝐿𝐿,𝑡𝑡−1

𝒙𝒙1,𝑡𝑡−1

𝒚𝒚𝑡𝑡−1

𝒙𝒙𝐿𝐿,𝑡𝑡

𝒙𝒙1,𝑡𝑡

𝒚𝒚𝑡𝑡

𝒙𝒙𝐿𝐿,𝑡𝑡+1

𝒙𝒙1,𝑡𝑡+1

𝒚𝒚𝑡𝑡+1
…… …

𝒙𝒙𝐿𝐿,𝑡𝑡+2

𝒙𝒙1,𝑡𝑡+2

𝒚𝒚𝑡𝑡+2

…

𝒙𝒙2,𝑡𝑡−1 𝒙𝒙2,𝑡𝑡 𝒙𝒙2,𝑡𝑡+1 𝒙𝒙2,𝑡𝑡+2

26 / 29

Deep Gaussian State Space Processes -
contd.

Now our deep Gaussian state-space model is described by

ΨΨΨL,t = ΨΨΨL,t−1 + uΨL,t

xL,t = ΨΨΨ>L,tφφφv(xL,t−1) + uL,t

· · · · · ·
ΨΨΨ2,t = ΨΨΨ2,t−1 + uΨ2,t

x2,t = ΨΨΨ>2,tφφφv(x3,t) + u2,t

ΨΨΨ1,t = ΨΨΨ1,t−1 + uΨ1,t

x1,t = ΨΨΨ>1,tφφφv(x2,t) + u1,t

ΘΘΘt = ΘΘΘt−1 + εεεt

yt = ΘΘΘ>t φφφv(x1,t) + vt

27 / 29

Deep Gaussian State Space Processes -
estimation

Suppose that we have estimates of all the unknowns at t − 1.
Then we proceed as follows:

1. Using particle filters at each layer, we propagate the
states xl ,t−1 to xl ,t , for l = 1 : L starting from the
deepest layer until we reach x1,t . We then weight the

states x
(m)
1 and using the obtained weights compute

the estimates of all the processes, x̂l ,t .

2. Given the estimated states x̂l ,t , we apply Kalman
filters to estimate all the parameter processes ΘΘΘt and
ΨΨΨl ,t l = 1 : L.

3. We may repeat the above two steps one or more
times.

28 / 29

Conclusions

1 Motivated by studies based on multivariate local field
potential signals and spike trains from the brain, deep
state space models for tracking latent states were
proposed and investigated.

2 Gaussian processes approximated by random features
were used to track the latent state processes with
particle and Kalman filters.

3 The method was extended to include an ensemble of
filters.

29 / 29

	Motivation
	
	

